Transformed Schatten-1 Iterative Thresholding Algorithms for Matrix Rank Minimization and Applications

نویسندگان

  • Shuai Zhang
  • Penghang Yin
  • Jack Xin
چکیده

We study a non-convex low-rank promoting penalty function, the transformed Schatten-1 (TS1), and its applications in matrix completion. The TS1 penalty, as a matrix quasi-norm defined on its singular values, interpolates the rank and the nuclear norm through a nonnegative parameter a∈ (0,+∞). We consider the unconstrained TS1 regularized low-rank matrix recovery problem and develop a fixed point representation for its global minimizer. The TS1 thresholding functions are in closed analytical form for all parameter values. The TS1 threshold values differ in subcritical (supercritical) parameter regime where the TS1 threshold functions are continuous (discontinuous). We propose TS1 iterative thresholding algorithms and compare them with some state-ofthe-art algorithms on matrix completion test problems. For problems with known rank, a fully adaptive TS1 iterative thresholding algorithm consistently performs the best under different conditions, where ground truth matrices are generated by multivariate Gaussian, (0,1) uniform and Chi-square distributions. For problems with unknown rank, TS1 algorithms with an additional rank estimation procedure approach the level of IRucL-q which is an iterative reweighted algorithm, non-convex in nature and best in performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

(S1/2) regularization methods and fixed point algorithms for affine rank minimization problems

The affine rank minimization problem is to minimize the rank of a matrix under linear constraints. It has many applications in various areas such as statistics, control, system identification and machine learning. Unlike the literatures which use the nuclear norm or the general Schatten q (0 < q < 1) quasi-norm to approximate the rank of a matrix, in this paper we use the Schatten 1/2 quasi-nor...

متن کامل

Scalable Algorithms for Tractable Schatten Quasi-Norm Minimization

The Schatten-p quasi-norm (0<p<1) is usually used to replace the standard nuclear norm in order to approximate the rank function more accurately. However, existing Schattenp quasi-norm minimization algorithms involve singular value decomposition (SVD) or eigenvalue decomposition (EVD) in each iteration, and thus may become very slow and impractical for large-scale problems. In this paper, we fi...

متن کامل

Minimization of Transformed L1 Penalty: Closed Form Representation and Iterative Thresholding Algorithms

The transformed l1 penalty (TL1) functions are a one parameter family of bilinear transformations composed with the absolute value function. When acting on vectors, the TL1 penalty interpolates l0 and l1 similar to lp norm (p ∈ (0, 1)). In our companion paper, we showed that TL1 is a robust sparsity promoting penalty in compressed sensing (CS) problems for a broad range of incoherent and cohere...

متن کامل

Unified Scalable Equivalent Formulations for Schatten Quasi-Norms

The Schatten quasi-norm can be used to bridge the gap between the nuclear norm and rank function. However, most existing algorithms are too slow or even impractical for large-scale problems, due to the singular value decomposition (SVD) or eigenvalue decomposition (EVD) of the whole matrix in each iteration. In this paper, we rigorously prove that for any 0< p≤ 1, p1, p2 > 0 satisfying 1/p= 1/p...

متن کامل

Iterative Reweighted Algorithms for Matrix Rank Minimization Iterative Reweighted Algorithms for Matrix Rank Minimization

The problem of minimizing the rank of a matrix subject to affine constraints has many applications in machine learning, and is known to be NP-hard. One of the tractable relaxations proposed for this problem is nuclear norm (or trace norm) minimization of the matrix, which is guaranteed to find the minimum rank matrix under suitable assumptions. In this paper, we propose a family of Iterative Re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1506.04444  شماره 

صفحات  -

تاریخ انتشار 2015